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SUMMARY 
i 

A comparison  between the  force data obtained on a w h g  in air and 
Freon-12 at a low supersonic Mach number has been obtained from the pres- 
sure  coefficients measured a t  three spanwise stations- on a sweptback 
wing at asgles of a t tack of Oo, 2O, kO, and 6O. The pressure-coefficient 
data obtained in Freon-12 were converted to  equivalent air values by the 

between these  converted data and the data ac tudly   ob ta ined  in air. 
Empirical  conversion  factors t o  be appl ied   to  data obtained  through  the 

values are presented as computed on the assumption of streamline simi- 
l ax i ty  of  the flow in both Freon-- and air. 

rn method presented in NACA RM L51Ill and very  close agreement was obtained 

. transonic Mach number range in  Freon-12 for  reduction to equivalent air 

INTRODUCTION 

At the  present time Freon-12 is used as a wind-tunnel tes t ing  medium 
at high  subsonic Mach numbers i n  the Langley  low-turbulence  pressure 
tunnel   ( ref .  1). The use of Freon-12 in  the place of  aAr has permitted 
&ZL increase in the wind-tqnnel test Mach number f r o m  0.4 t o  approximately 
1.0 without m y  additional power requirements.  References 2 asd 3 have 
indicated  the  adaptability of Freon-12 as a wind-tunnel testing medim; 
however, the u t i l i t y  of data obtained in tests i n  an atmosphere of 
Freon-12 is contingent upon the correspondence betweell data so obtained 
and data obtained in shilar tests in  air. It has been found Fn tests 
at subsonic Mach numbers with Freon-12 that any differences between the 
r e su l t s  of  flow tests i n  air and  Freon-12 are  small and, fur ther ,   tha t  
these small differences can largely be resolved by the application of a 
conversion method to the data which brings the results into substantial 
agreement. The re la t ion   u t i l i zed  in the  subsonic Mach number range t o  
e f f ec t   t h i s  conversion  of  the data is based upon the concept  of  geometrical 
s imilar i ty  of  the f l o w  patterns in the two tes t ing  m e d i u m s .  ' T h e  conversion 
method is described and some theo re t i ca l   j u s t i f i ca t ion   fo r  i t s  application 
is offered in reference 1 on the basis of the  transonic similarity ru le  
developed in reference 4. 
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The abili ty  to  convert-data  obtained in Freon-12 to  equivalent air a 

data i n  the  subsonic Mach  number range  under  widely  varying  flow  condi- 
t ions,  which included  flows with shocks at various chordwise positions 
of the models tested, suggested the.  use o f  Freon-I2 at low supersonic 
Mach numbers. Because of the  greater  divergence between the flow 
character is t ics  in a i r  and Freon-12 at supersonic Mach numbers, it was 
not apparent that the same conversion methods based on the concept of 
geometrical  flow slmilarity would be applicable even at  low supersonic 
free-rjtream Mach numbers. The use of Freon as a tes t ing  medium at low 
supersonic Mach..pumbers Was accordingly  investigated by temporary  modifi- 
cation of the tes t .  section of the Langley  .low-turbulence  .pressure t u b e l  
t o  permit  operat-ion  with  Freon-12.ak-a Mach  number of approximately 1.185. 

s 

. .  

. -  
. .  

. -  

This  report compares pressure-distribution measurements on a 
45O sweptback w i n g  i n  supersonic  flow i n  Freon-le with similar measure- 
ments previously @de on the same wing in air in the Langley  8-foot high- 
speed tunnel. Small differences, which again found t o   e x i s t  between 
the results  obtained i n  the tw testin&kdiums .due t o  the difference  in 
specific-heat  ratlo 7 between the two gases, are largely  resolved by 
application of the same conversion method developed for subsonic  speeds 
in  reference 1. The method proposed f o r  the conversion of force and 
moment coefficients measured in Freon-= to their  equivalent a i r  values 
at subsonic Mach numbers i s  described  in  reference 1 and the same tech- . 
niques have been applied  herein  to  extend  these  force  conversion factors 
through a rarge of. low supersonic Mach numbers. . .  .- 

-. 
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SYMBOLS 

X 

H 

M 

P 

V 

stream-tube area - 

span of w i n g  

section chord  of wing, measured pa ra l l e l   t o  plane of synunetry 
of model 

distance from leading edge al.ong section chord of  wing 

total   pressure 

Mach  number 

m a s s  density 

velocity 

dynamic. pre s sure, 
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. 
P 

a 

. P  

PR 

Y 

a 

Y 

stat ic  pressure 

pressure  coefficient , P - Po 

%I 

resu l tan t  pressure  coefficient, pL - pU 

distance normal t o  free stream fn lift direction 

angle of attack 

ratio of specific  heat a t  constant pressure t o  specific  heat 
at constant volume 

wing-section wake drag coefficient 

wtng-drw coefficient due to  lift - 

w i n g  normal-f orce coefficient 

section pitching-moment coefficient about 0 . 2 5 ~  

section normal-force coefficient 

coefficient  in Freon-12 minus corresponding coefficient in sir 

Subscripts: 

A a i r  

F Freon-12 

U upper surface 

L lower surface 

0 conditions in free stream 

Y 
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conditiom in wake '1 

c r  

1 

conditions at a loca l  Mach number of 1.0 

local  conditions 

c 

METHODS FOR CONVERTING FmON-12 DATA TO AIR DATA 

The conversion of Freon-12 pressure coefficients  to  equivalent atr 
pressure  coefficients is based upon the concept of geometrical similarity 
of the  streamline  flow  patterns in the two tes t ing  mediums. With th ie  
concept the streem-tube a rea   ra t io  & r / A  f o r  any posit ion of the  flow 
in Freon-12 is considered  equal  to  the.stream-tube area ra t io   for   the  
same posit ion of the f l o w  in air. The var ia t ion of  stream-tube area 
rat io   with Mach  number for  both  gases is shown i n   f i g u r e  1 a s  determined 
from the  re la t ion 

7+1 

with the values of 7 = 1.4 f o r  air and 7 = 1.128 for Freon-12. The 
stream-tube  area i s  a minimum in-both  gases where the Mach number of the 
flow is  1.0. This minimum value of the stream-tube area &r is taken 
as the basis of  .the  relation  depicted i n  figure 1. 

The conversion of values of the pressure  coefficient  obtained  in 
either mdium t o  equivalent  values in  the  other  ipvolves the application 
of the area ratio  curves of figure 1 and the following relation: 

2 
p = -  

YMo2 
L 

- 1  I 
For example, t o  convel-trhown pressure  coefficients at a given free- 
stream Mach  n-er i n  Freon-I2 t o  air pressure  coefficients,  the  local. 
Mach numbers corresponding t o  the lmom pressure  coefficients in  Freon-12 
are determined by means of equation  (2). The free-stream and loca l  Mach 
numbers in  Freon-12 are then  converted t o  air Mach numbers f o r  the same 
area r a t i o  as determined by figure 1. Equation (2 1 is again employed a 

with the converted a i r  Mach numbers and the  value of y f o r  air t o  
I 
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. 
calculate  the air pressure  coefficients. The same procedure cazl be 
followed t o  convert air pressure  coefficients to equivalent  Freon  pres- 
sure  coefficients. 

The above-outlined  pressure-coefficient  conversion method was 
ut i l ized  in reference 1 on a large Quastity of available air pressure- 
coefficient data obtained  for tm a i r f o i l s  a t  various angles of attack 
to   der ive correspgnding Freon  pressure-coefficient CLIstributions and 
to compare the results of  chordwise integrations of the  two sets of 
pressure-coefficient  distributions. In this, manner., factors were derived 
t o  be applied to  normal-force, pitching-moment, and hinge-moment coef- 
f icients  obtained in Freon-12 in  order t o  convert these coefficients 
direct ly   to   equivalent  air coefficients  through the subsonic Mach number 
range. An explanation was presented In reference 1 for the apparently 
minor effects of such variables as body . s h a p e  and l i f t lng  condi t ions on 
these  conversion  factors which w e r e  found t o  be primarily dependent upon 
the free-stream  conditions. An analytical derivation of: the normal"force 
conversion  factors will now be presented in order to provide an explana- 
t i o n  of the  order of magnitude and trends of the normal-force and  mment 
conversion  factors  with free-stream Mach number. 

The analytical   derivation  of the conversion  factors was made by 
means of a l inear iza t ion  of the var ia t ion of pressure  ratios  with Mach 
m b e r   f o r  small l oca l  loadings. -The analysis i s  based on the concept 
of similar area r a t i o s  Acr/A fn Freon-12 and i n  air &B are the con- 
version  curves of reference 1. 

6 
7 

(qdH>F 

OA Values  of were calculated  for the stme value of free-stream 

area r a t i o  in afr and in Freon and are presented in  figure 2 ( curve 1) 
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as a function of the Freon fkee-stream Mach number. Values of the inte- 
grals  in equation (3) are not  obtainable in so straightforward a manner. 
Figure 3 presents the  pressure  ratios p/H in' air and in Freon  calcu- 
la ted for the same values of area  ratio,  as a function  of Freon Mach 
number. If the  problem is linearized  for.smal1 loads  t o  the extent 
t h a t  the  difference---in p/H between t h e  upper and lower surfaces of an 
a i r f o i l  at any chordwise posit ion can be defined as the  product of the 
r a t e  of var ia t ion of (p/E) with free-stream Mach  number +d the differ- 
ence i n  upper  and lowei- surface  local Mach numbers, then 

or 

. . .. * -  

L 

In actuality,  the  localMach numbers on an a i r f o l l  will range from zero 
t o  some value  greater  than  the  free-stream Mach  number; however, because 
the linear approximation t o  the curves  of figure 3 is actually  seen  to 
be well applicable  over a wide range of l oca l  Mach numbers f o r  a l&ge 

portion of the Mach number range, the value of do f o r  the free- 

stream Mach number should  closely  representthe mean value of this 
parameter for all the Local Mach numbers on the a i r f o i l .  Equation ( 5 )  
is plotted Fn figure 2 f o r  a range. of Freon  free-stream Mach numbers 
and i s  designated as curve (2) .  

a F .  

It fs now possible t o  write an approximate expression  for cnA/cnF 



NACA RM ~52~07 7 

Equation (6) i s  presented in f igure 2 as curve (3) ,  the  product of 
curves (1) and (2). For  comparative purposes the  normal-force  conversion 
curve of reference 1 has been  reproduced in figure 2 as CnA/CnF 
(curve 4). The order of  magnitude and trends of tJx conversion  curve 
of  reference I are seen t o  be closely  duplicated  throughout  the Mach nun- . 
ber range by the curve  derived  with  the linear approximation. The d i f -  
ferences between the two curves, (3)  and (4), are largely due t o  the 
f a c t  that the  analyt ical  curve  has  been derived with the use of  a0 
equal t o  i t s  value at the free-stream Mach number as a m e a n  value; whereas, 
the  actual m e a n  value would mre generally  correspond to  some other Mach 
number close t o  but  probably higher than the  free-streem Mach number. 

mF 

Tunnel Modification - 

The design of the t e w r a r y  modification t o  the test section of the 
Langley  low-turbulence  pressure  tunnel to permit t e s t ing  in Freon-12 at 
a Mach number of 1.185, corresponding t o  a Mach m e r  of 1.2 in air, 
w&s developed by the method of character is t ics .  The modification con- 
sisted of & p las t e r  nozzle lfner b u i l t  up on the side w a l l s  of the tunnel 
test section  entrance cone smoothed and fa i red  with a plas t ic   coa t ing   to  
conform t o  the design specifications. 

The  Mach number distribution  through  the test  section,  presented 
as air values  converted from the Freon data, is shown in  figure 4. The 
actual  free-stream Mach nmiber, as converted  from  Freon to air, in the 
region of the model used h these tests is seen t o  correspond more  closely 
t o  an average  value of 1.205 than to the design  value of 1.2. For the 

' comparison purposes employed in the following analysis any such s l igh t  
difference in  the air free-stream Mach number i s  negligible. 

Model and Tests 

The wing-fuselage model tes ted  in the Langley low-turbulence  pres- 
sure tunnel in Freon-12 was the same one previously tested in the  
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Langley 8-foot  high-speed  tunnel i n  air and described in reference 5.  
The wing had 45O sweepback o f - t h e  quarter-chord  line, an aspect   ra t io  
of 4, a t ape r   r a t io  of 0.6, and NACA 65~006 a i r fo i l   sec t ions   para l le l  
to- the a i r  stream. The fuselage had a fineness  ratio of 10 formed by 
cutt ing  off   the rear 1/6 of a body of  revolution  with a f ineness   ra t io  
of 12. 

The model had been tested i n - a i r  as a full-span sting-mounted con- 
figuration but was t e s t ed   i n  Freon as a semispan model  mounted w i t h  the 
plane of symmetry of the fuselage  f lush against the  tunnel wall. The 
l e f t  semispan of the or iginal  model-was selected  for   the  tes ts  and is  
shown in  figure 5. The three chordwise r o w s  of static-pressure  orifices 
located on both wing surfaces at 20, 60, and 95 percent semispan  ma^^ be 
seen In the  figure. . .  

"he Reynolds number f o r  these tests, based on the  mean aerodynamic 
chord of the wing of 6.125 inches, was 2.25 x 10 6 as compared with 
1.93 x 10 6 in the 8-foot-high-speed.tunnel tests. This slight difference 
i n  Reynolds number in the two wind tunnels would not be expected t o  have 
an ef fec t  on the comparison of' the results  obtained  for the test model 
i n  the presently conside-d range of angle of attack from Oo t o  6 O .  

The stagnation  pressure  for the present- t e s t s  vas 12 inches of 
mercury. The dynamic pressure was, therefore,  about 0.4 of the dynmlc 
pressure i n   t h e  8-foot high-speed tunnel   t es t s  on the 8- model. Any 
small spanwise variations-% the angle of attack which may have been 
present due to   aeroelast ic   effects  were consequently less pronounced i n  
the  present  tests.  

RESULTS AND DISCUSSION 

Pressure  -Distributions 

Pressure  coefficients were measured i n  Freon a t  a free-stream Mach 
number of 1.19 which, when converted,  corresponds t o  a free-stream air 
Mach  number of 1.205. The coefficients were measured at 20, 60, and 
95 percent of the semispan at angles of attack of -Oo, 2O, bo, and 6O. 
The magnitude of the  differences i n  pressure  coefficients measured on 
the t e s t  model a t  a representative  attitude in  the two gases i s  depicted 
in figure 6 which i s  presented as an example. Figure 6 dso presents 
the Freon flow  pressure  coefficients  converted  to  equivalent air values 
by the stream-tube area r a t i o  method, applied to. the free-stream direc- 
t i o n  as suggested in reference 1, and shows good agreement of the con- 
verted Freon data with the  values measured in air. Further comparisons 
between the  converted data and available air data are presented in 

L 

a 

a 



MACA m ~ 5 2 ~ 0 7  9 
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figure 7 where the agreement i s  seen t o  be consistent. Tihe data of 
figure 7 typify the results  obtained a t  all conditions of the test. 

may be found t o  exist i n  the region of steep pressure gradient near the 
Wrng leading edge may be a t t r ibu tab le   t o  such  differences between the . 
two testing  conditions as angle-of-attack setting,. model surface condi- 
t ion,  and aerodynamic twist. 

1 Any small discrepancies between the air and converted  Freon data which 

Force and Moment Conversion  Factors 

The results of the  pressure-distribution measurements exemplify the 
conformity  of data obtained i n  the  two tes t ing  medfums and jus t i fy   the  
use of the  conversion method, based on the assumption of similar area 
r a t io s  in the two gases, at a low supersonic Mach number. The conversion 
of data obtained in  Freon, other than pressure  distributions,  to  air 
values  through the transonic Mach  number range,  theref  ore, can be facil i-  
ta ted  by following the  procedure employed at subsonic Mach numbers in  
reference 1. 

Normal force and pitching moment. - Pressure dis t r ibut ions of  refer-  
ence 6 measured through the transonlc Mach number range on the test  
model in  air a t  angles of attack from 4' t o  !Xo were converted t o  Freon ' 

pressure  coefficients and the increments between the  ioad  coeff ic ients  
in the two gases were determined ( for  example, f i g  . 8) . The percentage 
increments between the normal-force and pitching-moment coefficients i n  
the two gases were calculated by integration  of  the  load-coefficient 
increments and thus the corresponding  conversion  curves of reference 1 
were extended t o  a Freon free-stream Mach number of 1.185 ( f ig .  9 )  . The 
data points of figure 9 which are at widest variance - w i t h  the faired 
curves were found to  repre  sent such sme.ll values of CnA and cmA that 
their conversion t o  equivalent Freon values, CnF and cmF, would be 

very little affected by a choice  of e i the r  the increment  percentage 
suggested by the specif ic  data point or the  faired curve. The extended 
conversion  curves of figure 9 are in  accordance with-the  predictions of 
the  linemized  approximation  of'figure 2. 

Zero-lif t  drq. - Wake drags measured in the two gases may be com- 
pared by application  of  the  concept of streamline-flow similazity t o  
the  region of the w&e as in reference 1. The drag  coefficient can be 
expressed as: 
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n 

I - Y -1 L'l 1 

L 
"I d Y l  ( 7 )  

. 

from reference 7 when the wake is. measured suf f ic ien t ly   fa r  downstream 
for   the   s ta t ic   p ressure .   to  have returned to -its value in the  f ree  stream. 

Figure 10 presents  the  elemental wake-drag conversion  factor  calcu- . - 
l a ted  by means of-equation (7) and. with  the  use of the streamline simi- 
lar i ty   concept-for  a free-stream Mach  number i n  air of-1.2 as a function 

of the  local  wake total-pressure-loss  coefficient;" (" 'I) . A t  sub- 

sonfc Mach numbers the elemental wake-drag conversion  factor was found t o  
% - P O A  

vary much more with free-stream Mach number than w i t h  the- wake t o t a l  
/EL - E,\ 

pressure loss. Consequently, the  value of = 0.12 which w a s  

found 50 represent an average total   pressure loss' i n  the w&e for- a wide 
variety of subsonic  drag  data was selected in reference 1 to provide  the 
increment  percentage  of wake-drag coefficient.  Although a comparison 

with  experimental data was not  available,  the same value  of 

and figure 10 were used t o  extend  the wake-drag conversion  curve of 
figure 11 t o  a F e o n  free-stream Mach  number of'1.185. 

I HO - =1 
(Ho - P J A  

Drag  due t o  lift-.- The fact  that-the concept of induced  drag at aub- 
sonic speeds, which is associated  with the rearward t i l t i n g  of the lift 
vector due to   the   t ra i l ing   vor t ices ,   loses  its meaning a t  suprsonic  
speeds raises some question as t o  the method to be employed in converting 
Freon-I2 drag &ta .to air data at Mach numbers above 1.0. The subsonic 
drag conversion method of reference 1 was based on the idea that the 
measured t o t a l  drag  could be resolved  into two components: (e) tha t   par t  
of the drag associated  with  the  general  field of flow, tha t  is, the 
rearward t i l t i n g  of the lift vector at the wing  due to   the  effect  of the 
tra i l ing   vor t ices  and (b) that--par t  of the  drag  associated  with  losses 
of total   pressure i n  the immediate v ic in i ty  of--the wing. Wake surveys 
made in   t he   v i c in i ty  of  the wing would include all of the drag of  type (b) 
but  practically none of  type  (a). 
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Because of the  uncertainty  regarding the meaning of induced dr& 
i n  the  dorementioned  sense at supersonic  speeds, it i s  a r e  convenient 
to   resolve  the  total   drag a t  supersonic  speeds i n  a different  manner. 
The t o t a l  drag may be considered t o  be composed of a pressure drag and 
a skin-friction drag with  the drag axis taken in  the free-stream direc- 
t ion.  With the axis taken   in   th i s   d i rec t ion  all the  drag,  regardless 
of  i t s  source, will 5e included. Because the wlngs considered for use 
at supersonic  speeds are thin and because the  leading-edge  suction i s  
generally small at transonic and supersonic  speeds, it is reasonable t o  
assume that the  resultant  pressure  force on th i s  type of wing is  per- 
pendicular t o   t h e  chord  plane and that, for   the  purpose of determining 
the Freon t o  air pressure drag conversion  factor, Cx m C w .  With the 
assumption that the  resultant  pressure  force is  perpendicular  to  the 
chord  plane all the  drag a t  CN = 0 can be considered t o  be skin-friction 
drag. This skin-friction drag is fur ther  assumed t o  remain constant 
with changes i n  angle pf  attack. This l a t t e r  component of the t o t a l  drag 
would always be completely  included in  a w a k e  s"vey at CN = 0. The 
method of conversion of Freon t o t a l  d r a g s  t o  air d r a g s  at supersonic . speeds is then t o  apply the wake-drag  conversion  factors  (fig. 11) to 
the   zero- l i f t  drag, and the  normal-force  conversion  factors  (fig. 9 )  t o  
the remainder of the drag. Any inaccuracies which may e x i s t   i n  the pre- 
ceding method of analyzing  the  total   drag  in  a supersonic flow can result 
in only  negl igible   errors   in  the conversion of Freon t o t a l   d r a g s   t o  air 
t o t a l  drws inasmuch as the normal-force  conversion fac tors  and the wake- 
drag conversion  factors differ by a maximum of only a f e w  percent  over 
the Mach  number range considered. 

The preceding  assumptions on which the supersonfc  drag  conversion 
factors  depend are equally  applicable at subsonic speeds f o r   t h i n  wings 
when the  leading-edge  suction i s  smal l .  It i s  desirable, therefore ,   to  
compare the results o f  both  conversion methods at subsonic speeds. A 
quantity  of  available  Freon  total drag data, obtained at high  subsonic 
speeds, were converted t o  corresponding data in air by the method of 
reference 1 and also by the method of the  present  report. The converted 
t o t a l  drag data obtained by both methods differed by a maxhum of less 
than two percent. Inasmuch as the drag-conversion method of reference 1 
is mre generally  applicable at subsonic  speeds than the conversion 
method of this  report,  subsonic drag data obtained in Freon in the low-  
turbulence  pressure  tunnel w i l l  continue t o  be converted t o  air data by 
the earlier method. 

Lateral force and moments.-  The  moment of a wing a b u t  a longitudinal 
axis i s  a function  only of the normal force  act ing  on-the wing- f o r  a con- 
stant center  of  pressure. The spanwise  section-normal-force coeff ic ients  
over the wing f o r  any given  free-stream Mach  number "e all converted by 

location i s  the same for   bo th  air and Freon-12. The conversion  factor 
. the same percentage  increment  (fig. 9 )  so that   the   center  of pressure 
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for   the normal-force  coefficient,  therefore,  can be used t o  convert 
rolling-moment coefficients measured i n  Freon-12 t o  corresponding 
coeff ic ients   in  air. 

. 

The  yawing-moment and side-force  coiwersion  factors w i l l  depend 
upon the  nature of the  forces  involved and so may vary  for   dif ferent  
configurations.- For example, the yawing moment contributed by a 
deflected  rudder %s caused by a pressure  force  acting on the   ver t ica l  
t a i l  surface and the conversion of the yawing-moment coefficient from 
Freon-12 t o  air should  be made, therefore, by application of the normal- 
force  conversion  factor. On the  other hand, a ya-  moment may be 
caused by &symmetrical skin-fr ic t ion  forces ,   in  which case,  the moment 
should be converted from Freon-12 t o  air by application of the wake-  
drag conversion  factor,. The convereion  ofyawing moment and side  force, 
therefore,  should be determined for  each  individual  configuration after 
consideration of the  forces  involved. 

" 

CONCLUDING REMARKS 

A temporary modification was made to  the- tes t   sect ion of the Langley 
low-turbulence  pressure  tunnel tu-permit .testing in  Freon-12 at a low r 

supersonic- Mach number. . A comparison between the  force data obtained on 
a wing i n  air  and i n  Freon-12 at a low supersonic Mach number has been 
obtained from the pressure  coefficients measuredoat three spanwise stat ions 
on a 45O sweptback wing at angle8 of at tack of 0 , 20, ..ko, and 6 O .  !I!& 

equivalent air values,  corresponded  very well t o  measured pressure- - 

coefficient data obtained in air. 

. pressure-coefficient data of the  pr&sen€  -Freon tests, as conver%ed t o  

Conversion factors  to be applied  to  force and.moment data obtained 
through  the  transonic Mach  number range i n  Freon-12 for  reduction to 
equivalent air values are presented as computed on the assumption  of 
streamline  similarity of 'the flow i n  both Freon-12 and afr. 

- 

Langley  Aeronautical  Laboratory, 
National Advisory Committee f o r  Aeronautics, 

Langley Field, Va.  e 
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Mach number 

Figure 1.- Variation qf stream-tube area ratio with Mach number. 
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Reon-12 f r e b e ~ e a m  Mach number, 

Figure 2.- Compariaon of n o d - f o r c e  conversion factors.of reference 1 
wlth those derlvea by means of a linear approximation .to tk curves 
of figure 3. 
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Freon-12 Hach 'number, 

Figure 3 . -  Variation of pressure  ratio  for Freon-12 and air with Freon-I2 
Mach number.  The pressure  ratios  for air are determined f o r  similar 
m a  ratios i n  the  gases. 
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Figure 4.- Longituainal distribution of Mach number midway between the 
center line and the side wall of the Langley low-turbulence pressure 
tunnel with the plaster liner imta l led  and Freon-12 as the t e s t  
me8lum; Freon-12 data converted t o  air values. 
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Figure 5.- Wing-fuselage model prepared for  installation in  test   section -4 
of Langley low-turbulence pressure tunnel. 
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mFcantobord 

Figure  6.- Comparison of pressure distributiom measured at O.6Ob/2 in 
air ap8 Freon-12 snd a l s o  converted from Freon-12 to air; u = 60. 
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Figure 7.- Chordwise preasure distributions at three semispan stations 
of the WACA 65~006 wing-fuselage model. Freon-12 data converted t o  
equivalent air values. 
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3 B 
Figure 8.- Chordwise  variation of upper- and lower-surface  pressure 

coefficients in air and the  calculated resultant-pressure- 
coefficient  increments  required to convert from air to Freon-12 
for the NACA 6x006 wing-fuselage combination. 



Figure 9.- Variatlon with Freon-12 free-stream Mach number of calculated 
increments requFred t o  convert llft and moment coefficients from Freon-12 
to air. 
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L e n d  vaka tOt.l-p~”lO~ m d f l e i a n t  . i n  air, 
, 

Figure 10.- Calculated variation o f  elenmtal vake-drag conversion  factor 
with lot+ wake total-pressure-loss coefficient in air f o r  a free-stream 
Mach number in a l r  of 1.2. 
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